Search results for " FPCA"

showing 5 items of 5 documents

A Data-Driven Approach for Studying the Influence of Carbides on Work Hardening of Steel

2022

This study proposes a new approach to determine phenomenological or physical relations between microstructure features and the mechanical behavior of metals bridging advanced statistics and materials science in a study of the effect of hard precipitates on the hardening of metal alloys. Synthetic microstructures were created using multi-level Voronoi diagrams in order to control microstructure variability and then were used as samples for virtual tensile tests in a full-field crystal plasticity solver. A data-driven model based on Functional Principal Component Analysis (FPCA) was confronted with the classical Voce law for the description of uniaxial tensile curves of synthetic AISI 420 ste…

TechnologyMicroscopyQC120-168.85FPCATQH201-278.5stress–strain diagramlinear mixed-effects modelEngineering (General). Civil engineering (General)TK1-9971Descriptive and experimental mechanicsVoronoi diagramssynthetic microstructure; stress–strain diagram; FPCA; Voronoi diagrams; Voce law; linear mixed-effects modelGeneral Materials ScienceElectrical engineering. Electronics. Nuclear engineeringTA1-2040Voronoi diagramsynthetic microstructureVoce law
researchProduct

Functional Principal Component Analysis for the explorative analysis of multisite-multivariate air pollution time series with long gaps

2013

The knowledge of the urban air quality represents the first step to face air pollution issues. For the last decades many cities can rely on a network of monitoring stations recording concentration values for the main pollutants. This paper focuses on functional principal component analysis (FPCA) to investigate multiple pollutant datasets measured over time at multiple sites within a given urban area. Our purpose is to extend what has been proposed in the literature to data that are multisite and multivariate at the same time. The approach results to be effective to highlight some relevant statistical features of the time series, giving the opportunity to identify significant pollutants and…

Statistics and ProbabilityPollutantFunctional principal component analysisgeographyMultivariate statisticsgeography.geographical_feature_categorySeries (mathematics)Computer scienceAir pollutionFunctional data analysiscomputer.software_genreUrban areamedicine.disease_causeAir quality Functional Data Analysis Three mode FPCA EOFmedicineData miningStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaAir quality indexcomputer
researchProduct

IMPLEMENTAZIONE DI UN ALGORITMO DI CLUSTERING PER L’IDENTIFICAZIONE DELLE PRECIPITAZIONI STRATIFORMI E CONVETTIVE ALLA SCALA D’EVENTO: UN’APPLICAZION…

Precipitazioni stratiformi precipitazioni convettive FPCAC algoritmo di clusteringSettore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologia
researchProduct

Long gaps in multivariate spatio-temporal data: an approach based on functional data analysis

2015

The main aim of this paper is to perform Functional Principal Component Analysis (FPCA) taking into account spatio-temporal correlation structures, in order to fill in missing values in spatio-temporal multivariate data set. A spatial and a spatio-temporal variant of the classical temporal FPCA is considered; in other words, FPCA is carried out after modeling data with respect to more than one dimension: space (long, lat) or space+time. Moreover, multidimensional FPCA is extended to multivariate context (more than one variable). Information on spatial or spatiotemporal structures are efficiently extracted by applying Generalized Additive Models (GAMs). Both simulation studies and some perfo…

FDA FPCA GAM P-splines.Settore SECS-S/01 - Statistica
researchProduct

Comparing Spatial and Spatio-temporal FPCA to Impute Large Continuous Gaps in Space

2018

Multivariate spatio-temporal data analysis methods usually assume fairly complete data, while a number of gaps often occur along time or in space. In air quality data long gaps may be due to instrument malfunctions; moreover, not all the pollutants of interest are measured in all the monitoring stations of a network. In literature, many statistical methods have been proposed for imputing short sequences of missing values, but most of them are not valid when the fraction of missing values is high. Furthermore, the limitation of the methods commonly used consists in exploiting temporal only, or spatial only, correlation of the data. The objective of this paper is to provide an approach based …

Functional principal component analysisComplete dataMultivariate statisticsLong gapComputer sciencecomputer.software_genreMissing dataCorrelationFDA FPCA GAM P-splinesData analysisData miningImputation (statistics)Settore SECS-S/01 - Statisticacomputer
researchProduct